Display Summary Information for an anglemania_object
Source:R/objects.R
anglemania_object-methods.Rd
This method provides a concise summary of an anglemania_object
, including
dataset and batch information, the number of intersected genes, and other
relevant details.
Retrieves the list of gene expression matrices stored in the anglemania_object
object.
Assigns a new list of gene expression matrices to the anglemania_object
.
Retrieves the dataset key used in the anglemania_object
.
Retrieves the batch key used in the anglemania_object
.
Retrieves the data frame summarizing the selected anglemania gene pairs
anglemania_object
.
Retrieves the weights assigned to each dataset or batch in the anglemania_object
Assigns new weights to the datasets or batches in the anglemania_object
.
Retrieves the list of statistical measures computed across datasets in the
anglemania_object
.
Assigns a new list of statistical measures to the anglemania_object
.
Retrieves the vector of genes that are expressed in at least the specified number of cells across all batches.
Assigns a new vector of intersected genes to the anglemania_object
.
Retrieves the list of genes selected for integration from the anglemania_object
This function adds a unique batch identifier to the metadata of a
Seurat
object by combining specified dataset and batch
keys. This is useful for distinguishing samples during integration or
analysis.
Usage
# S4 method for class 'anglemania_object'
show(object)
matrix_list(object)
# S4 method for class 'anglemania_object'
matrix_list(object)
matrix_list(object) <- value
# S4 method for class 'anglemania_object'
matrix_list(object) <- value
dataset_key(object)
# S4 method for class 'anglemania_object'
dataset_key(object)
batch_key(object)
# S4 method for class 'anglemania_object'
batch_key(object)
data_info(object)
# S4 method for class 'anglemania_object'
data_info(object)
angl_weights(object)
# S4 method for class 'anglemania_object'
angl_weights(object)
angl_weights(object) <- value
# S4 method for class 'anglemania_object'
angl_weights(object) <- value
list_stats(object)
# S4 method for class 'anglemania_object'
list_stats(object)
list_stats(object) <- value
# S4 method for class 'anglemania_object'
list_stats(object) <- value
intersect_genes(object)
# S4 method for class 'anglemania_object'
intersect_genes(object)
intersect_genes(object) <- value
# S4 method for class 'anglemania_object'
intersect_genes(object) <- value
get_anglemania_genes(object)
# S4 method for class 'anglemania_object'
get_anglemania_genes(object)
add_unique_batch_key(
seurat_object,
dataset_key = NA_character_,
batch_key,
new_unique_batch_key = "batch"
)
Arguments
- object
An
anglemania_object
.- value
A character vector of gene names.
- seurat_object
A
Seurat
object.- dataset_key
A character string specifying the column name in the metadata that identifies the dataset. If
NA
, only thebatch_key
is used.- batch_key
A character string specifying the column name in the metadata that identifies the batch.
- new_unique_batch_key
A character string for the new unique batch key to be added to the metadata. Default is
"batch"
.
Value
Prints a summary to the console.
A list of FBM
objects containing gene
expression matrices.
The updated anglemania_object
.
A character string representing the dataset key.
A character string representing the batch key.
A data frame containing dataset and batch information.
A named numeric vector of weights.
The updated anglemania_object
.
A list containing statistical matrices such as mean z-scores and SNR z-scores
The updated anglemania_object
.
A character vector of intersected gene names from multiple Seurat objects.
The updated anglemania_object
object.
A character vector of integration gene names.
A Seurat
object with an additional metadata
column containing the unique batch key.
Functions
show(anglemania_object)
: show anglemania_object infomatrix_list()
: Access matrix listmatrix_list(object) <- value
: set matrix list in anglemania_objectdataset_key()
: Access dataset key of anglemania_objectbatch_key()
: Access batch key of anglemania_objectdata_info()
: Access info of selected gene pairsangl_weights()
: Access weightsangl_weights(object) <- value
: Set weightslist_stats()
: Access statistics of the gene-gene matriceslist_stats(object) <- value
: Set statistics of the gene-gene matricesintersect_genes()
: Access the intersection of genes of all batchesintersect_genes(object) <- value
: Set the intersection of genes of all batchesget_anglemania_genes()
: Access the genes extracted by anglemaniaadd_unique_batch_key()
: Temporarily add a unique batch key to the dataset
Examples
se <- SeuratObject::pbmc_small
angl <- create_anglemania_object(se, batch_key = "groups")
#> No dataset_key specified.
#> Assuming that all samples belong to the same dataset and are separated by batch_key: groups
#> Extracting count matrices...
#> Filtering each batch to at least 1 cells per gene...
#> Using the intersection of filtered genes from all batches...
#> Number of genes in intersected set: 228
#>
| | 0 % elapsed=00s
|==================================================| 100% elapsed=00s, remaining~00s
angl <- anglemania(angl)
#> Computing angles and transforming to z-scores...
#>
| | 0 % elapsed=00s
|========================= | 50% elapsed=00s, remaining~00s
|==================================================| 100% elapsed=00s, remaining~00s
#> Computing statistics...
#> Weighting matrix_list...
#> Calculating mean...
#> Calculating sds...
#> Filtering features...
show(angl)
#> anglemania_object
#> --------------
#> Dataset key: NA
#> Batch key: groups
#> Number of datasets: 1
#> Total number of batches: 2
#> Batches (showing first 5):
#> g2, g1
#> Number of intersected genes: 228
#> Intersected genes (showing first 10):
#> MS4A1, CD79B, CD79A, HLA-DRA, TCL1A, HLA-DQB1, HVCN1, HLA-DMB, LTB, LINC00926 , ...
#> Min cells per gene: 1
se <- SeuratObject::pbmc_small
angl <- create_anglemania_object(se, batch_key = "groups")
#> No dataset_key specified.
#> Assuming that all samples belong to the same dataset and are separated by batch_key: groups
#> Extracting count matrices...
#> Filtering each batch to at least 1 cells per gene...
#> Using the intersection of filtered genes from all batches...
#> Number of genes in intersected set: 228
#>
| | 0 % elapsed=00s
|==================================================| 100% elapsed=00s, remaining~00s
angl <- anglemania(angl)
#> Computing angles and transforming to z-scores...
#>
| | 0 % elapsed=00s
|========================= | 50% elapsed=00s, remaining~00s
|==================================================| 100% elapsed=00s, remaining~00s
#> Computing statistics...
#> Weighting matrix_list...
#> Calculating mean...
#> Calculating sds...
#> Filtering features...
str(matrix_list(angl))
#> List of 2
#> $ g1:Reference class 'FBM' [package "bigstatsr"] with 15 fields
#> ..$ extptr :<externalptr>
#> ..$ extptr_rw :<externalptr>
#> ..$ nrow : int 228
#> ..$ ncol : int 228
#> ..$ type : Named int 8
#> .. ..- attr(*, "names")= chr "double"
#> ..$ backingfile : chr "/tmp/Rtmpb1qOQN/file170928707d7a.bk"
#> ..$ is_read_only: logi FALSE
#> ..$ address :<externalptr>
#> ..$ address_rw :<externalptr>
#> ..$ bk : chr "/tmp/Rtmpb1qOQN/file170928707d7a.bk"
#> ..$ rds : chr "/tmp/Rtmpb1qOQN/file170928707d7a.rds"
#> ..$ is_saved : logi FALSE
#> ..$ type_chr : chr "double"
#> ..$ type_size : int 8
#> ..$ file_size : num 415872
#> ..and 22 methods, of which 8 are possibly relevant:
#> .. add_columns, bm, bm.desc, check_dimensions, check_write_permissions,
#> .. initialize, save, show#envRefClass
#> $ g2:Reference class 'FBM' [package "bigstatsr"] with 15 fields
#> ..$ extptr :<externalptr>
#> ..$ extptr_rw :<externalptr>
#> ..$ nrow : int 228
#> ..$ ncol : int 228
#> ..$ type : Named int 8
#> .. ..- attr(*, "names")= chr "double"
#> ..$ backingfile : chr "/tmp/Rtmpb1qOQN/file1709dda5d42.bk"
#> ..$ is_read_only: logi FALSE
#> ..$ address :<externalptr>
#> ..$ address_rw :<externalptr>
#> ..$ bk : chr "/tmp/Rtmpb1qOQN/file1709dda5d42.bk"
#> ..$ rds : chr "/tmp/Rtmpb1qOQN/file1709dda5d42.rds"
#> ..$ is_saved : logi FALSE
#> ..$ type_chr : chr "double"
#> ..$ type_size : int 8
#> ..$ file_size : num 415872
#> ..and 22 methods, of which 8 are possibly relevant:
#> .. add_columns, bm, bm.desc, check_dimensions, check_write_permissions,
#> .. initialize, save, show#envRefClass
se <- SeuratObject::pbmc_small
se[[]]$Dataset <- rep(c("A", "B"), each = ncol(se) / 2)
angl <- create_anglemania_object(
se,
dataset_key = "Dataset",
batch_key = "groups",
min_cells_per_gene = 1
)
#> Using dataset_key: Dataset
#> Extracting count matrices...
#> Filtering each batch to at least 1 cells per gene...
#> Using the intersection of filtered genes from all batches...
#> Number of genes in intersected set: 156
#>
| | 0 % elapsed=00s
|========================= | 50% elapsed=00s, remaining~00s
|==================================================| 100% elapsed=00s, remaining~00s
dataset_key(angl)
#> [1] "Dataset"
se <- SeuratObject::pbmc_small
angl <- create_anglemania_object(
se,
batch_key = "groups",
min_cells_per_gene = 1
)
#> No dataset_key specified.
#> Assuming that all samples belong to the same dataset and are separated by batch_key: groups
#> Extracting count matrices...
#> Filtering each batch to at least 1 cells per gene...
#> Using the intersection of filtered genes from all batches...
#> Number of genes in intersected set: 228
#>
| | 0 % elapsed=00s
|==================================================| 100% elapsed=00s, remaining~00s
batch_key(angl)
#> [1] "groups"
se <- SeuratObject::pbmc_small
angl <- create_anglemania_object(
se,
batch_key = "groups",
min_cells_per_gene = 1
)
#> No dataset_key specified.
#> Assuming that all samples belong to the same dataset and are separated by batch_key: groups
#> Extracting count matrices...
#> Filtering each batch to at least 1 cells per gene...
#> Using the intersection of filtered genes from all batches...
#> Number of genes in intersected set: 228
#>
| | 0 % elapsed=00s
|==================================================| 100% elapsed=00s, remaining~00s
batch_key(angl)
#> [1] "groups"
se <- SeuratObject::pbmc_small
angl <- create_anglemania_object(
se,
batch_key = "groups",
min_cells_per_gene = 1
)
#> No dataset_key specified.
#> Assuming that all samples belong to the same dataset and are separated by batch_key: groups
#> Extracting count matrices...
#> Filtering each batch to at least 1 cells per gene...
#> Using the intersection of filtered genes from all batches...
#> Number of genes in intersected set: 228
#>
| | 0 % elapsed=00s
|==================================================| 100% elapsed=00s, remaining~00s
batch_key(angl)
#> [1] "groups"
angl_weights(angl)
#> g2 g1
#> 0.5 0.5
se <- SeuratObject::pbmc_small
angl <- create_anglemania_object(
se,
batch_key = "groups",
min_cells_per_gene = 1
)
#> No dataset_key specified.
#> Assuming that all samples belong to the same dataset and are separated by batch_key: groups
#> Extracting count matrices...
#> Filtering each batch to at least 1 cells per gene...
#> Using the intersection of filtered genes from all batches...
#> Number of genes in intersected set: 228
#>
| | 0 % elapsed=00s
|==================================================| 100% elapsed=00s, remaining~00s
angl <- anglemania(angl)
#> Computing angles and transforming to z-scores...
#>
| | 0 % elapsed=00s
|========================= | 50% elapsed=00s, remaining~00s
|==================================================| 100% elapsed=01s, remaining~00s
#> Computing statistics...
#> Weighting matrix_list...
#> Calculating mean...
#> Calculating sds...
#> Filtering features...
stats <- list_stats(angl)
str(stats)
#> List of 3
#> $ mean_zscore: num [1:228, 1:228] NA 4.02 4.88 2.85 4.48 ...
#> $ sds_zscore : num [1:228, 1:228] NA 0.601 0.21 0.461 0.86 ...
#> $ sn_zscore : num [1:228, 1:228] NA 6.69 23.19 6.17 5.21 ...
se <- SeuratObject::pbmc_small
angl <- create_anglemania_object(
se,
batch_key = "groups",
min_cells_per_gene = 1
)
#> No dataset_key specified.
#> Assuming that all samples belong to the same dataset and are separated by batch_key: groups
#> Extracting count matrices...
#> Filtering each batch to at least 1 cells per gene...
#> Using the intersection of filtered genes from all batches...
#> Number of genes in intersected set: 228
#>
| | 0 % elapsed=00s
|==================================================| 100% elapsed=00s, remaining~00s
intersect_genes(angl)
#> [1] "MS4A1" "CD79B" "CD79A" "HLA-DRA"
#> [5] "TCL1A" "HLA-DQB1" "HVCN1" "HLA-DMB"
#> [9] "LTB" "LINC00926" "FCER2" "SP100"
#> [13] "NCF1" "PPP3CC" "EAF2" "PPAPDC1B"
#> [17] "CD19" "KIAA0125" "CYB561A3" "CD180"
#> [21] "RP11-693J15.5" "FAM96A" "CXCR4" "STX10"
#> [25] "SNHG7" "NT5C" "BANK1" "IGLL5"
#> [29] "CD200" "FCRLA" "CD3D" "NOSIP"
#> [33] "SAFB2" "CD2" "IL7R" "PIK3IP1"
#> [37] "MPHOSPH6" "KHDRBS1" "MAL" "CCR7"
#> [41] "THYN1" "TAF7" "LDHB" "TMEM123"
#> [45] "CCDC104" "EPC1" "EIF4A2" "CD3E"
#> [49] "TMUB1" "BLOC1S4" "ACSM3" "TMEM204"
#> [53] "SRSF7" "ACAP1" "TNFAIP8" "CD7"
#> [57] "TAGAP" "DNAJB1" "ASNSD1" "S1PR4"
#> [61] "CTSW" "GZMK" "NKG7" "IL32"
#> [65] "DNAJC2" "LYAR" "CST7" "LCK"
#> [69] "CCL5" "HNRNPH1" "SSR2" "DLGAP1-AS1"
#> [73] "GIMAP1" "MMADHC" "ZNF76" "CD8A"
#> [77] "PTPN22" "GYPC" "HNRNPF" "RPL7L1"
#> [81] "KLRG1" "CRBN" "SATB1" "SIT1"
#> [85] "PMPCB" "NRBP1" "TCF7" "HNRNPA3"
#> [89] "S100A8" "S100A9" "LYZ" "CD14"
#> [93] "FCN1" "TYROBP" "ASGR1" "NFKBIA"
#> [97] "TYMP" "CTSS" "TSPO" "RBP7"
#> [101] "CTSB" "LGALS1" "FPR1" "VSTM1"
#> [105] "BLVRA" "MPEG1" "BID" "SMCO4"
#> [109] "CFD" "LINC00936" "LGALS2" "MS4A6A"
#> [113] "FCGRT" "LGALS3" "NUP214" "SCO2"
#> [117] "IL17RA" "IFI6" "HLA-DPA1" "FCER1A"
#> [121] "CLEC10A" "HLA-DMA" "RGS1" "HLA-DPB1"
#> [125] "HLA-DQA1" "RNF130" "HLA-DRB5" "HLA-DRB1"
#> [129] "CST3" "IL1B" "POP7" "HLA-DQA2"
#> [133] "CD1C" "GSTP1" "EIF3G" "VPS28"
#> [137] "LY86" "ZFP36L1" "ANXA2" "GRN"
#> [141] "CFP" "HSP90AA1" "LST1" "AIF1"
#> [145] "PSAP" "YWHAB" "MYO1G" "SAT1"
#> [149] "RGS2" "SERPINA1" "IFITM3" "FCGR3A"
#> [153] "LILRA3" "S100A11" "FCER1G" "TNFRSF1B"
#> [157] "IFITM2" "WARS" "IFI30" "MS4A7"
#> [161] "C5AR1" "HCK" "COTL1" "LGALS9"
#> [165] "CD68" "RP11-290F20.3" "RHOC" "CARD16"
#> [169] "LRRC25" "COPS6" "ADAR" "PPBP"
#> [173] "GPX1" "TPM4" "PF4" "SDPR"
#> [177] "NRGN" "SPARC" "GNG11" "CLU"
#> [181] "HIST1H2AC" "NCOA4" "GP9" "FERMT3"
#> [185] "ODC1" "CD9" "RUFY1" "TUBB1"
#> [189] "TALDO1" "TREML1" "NGFRAP1" "PGRMC1"
#> [193] "CA2" "ITGA2B" "MYL9" "TMEM40"
#> [197] "PARVB" "PTCRA" "ACRBP" "TSC22D1"
#> [201] "VDAC3" "GZMB" "GZMA" "GNLY"
#> [205] "FGFBP2" "AKR1C3" "CCL4" "PRF1"
#> [209] "GZMH" "XBP1" "GZMM" "PTGDR"
#> [213] "IGFBP7" "TTC38" "KLRD1" "ARHGDIA"
#> [217] "IL2RB" "CLIC3" "PPP1R18" "CD247"
#> [221] "ALOX5AP" "XCL2" "C12orf75" "RARRES3"
#> [225] "PCMT1" "LAMP1" "SPON2" "S100B"
se <- SeuratObject::pbmc_small
angl <- create_anglemania_object(
se,
batch_key = "groups",
min_cells_per_gene = 1
)
#> No dataset_key specified.
#> Assuming that all samples belong to the same dataset and are separated by batch_key: groups
#> Extracting count matrices...
#> Filtering each batch to at least 1 cells per gene...
#> Using the intersection of filtered genes from all batches...
#> Number of genes in intersected set: 228
#>
| | 0 % elapsed=00s
|==================================================| 100% elapsed=00s, remaining~00s
angl <- anglemania(angl)
#> Computing angles and transforming to z-scores...
#>
| | 0 % elapsed=00s
|========================= | 50% elapsed=00s, remaining~00s
|==================================================| 100% elapsed=00s, remaining~00s
#> Computing statistics...
#> Weighting matrix_list...
#> Calculating mean...
#> Calculating sds...
#> Filtering features...
# extract the genes identified by anglemania()
anglemania_genes <- get_anglemania_genes(angl)
se <- SeuratObject::pbmc_small
se[[]]$Dataset <- rep(c("A", "B"), each = ncol(se)/2)
se <- add_unique_batch_key(
seurat_object = se,
dataset_key = "Dataset",
batch_key = "groups",
new_unique_batch_key = "batch"
)
head(se[[]])
#> orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8
#> ATGCCAGAACGACT SeuratProject 70 47 0
#> CATGGCCTGTGCAT SeuratProject 85 52 0
#> GAACCTGATGAACC SeuratProject 87 50 1
#> TGACTGGATTCTCA SeuratProject 127 56 0
#> AGTCAGACTGCACA SeuratProject 173 53 0
#> TCTGATACACGTGT SeuratProject 70 48 0
#> letter.idents groups RNA_snn_res.1 Dataset batch
#> ATGCCAGAACGACT A g2 0 A A:g2
#> CATGGCCTGTGCAT A g1 0 A A:g1
#> GAACCTGATGAACC B g2 0 A A:g2
#> TGACTGGATTCTCA A g2 0 A A:g2
#> AGTCAGACTGCACA A g2 0 A A:g2
#> TCTGATACACGTGT A g1 0 A A:g1